

INTRODUCTION

• **Background:** Fine-tuning a large pre-trained foundational ST model on a low-resource language pair has been the most prevalent technique. Our objective is to utilize all available data sources to improve model performance under the low-resource setting.

- **Problem:** Simply fine-tuning using the end-to-end (E2E) ST objective has three potential drawbacks:
 - The E2E ST data size is too small;
 - The available ASR and/or MT datasets are not used;
 - The foundation model may not have been pre-trained on this language.

- **Solution:** Besides traditional E2E and cascaded ST approaches, we tried
 - In-domain pre-training with ASR/MT objectives;
 - Multi-task fine-tuning, hoping the stronger MT teacher can help with ST performance.

METHOD

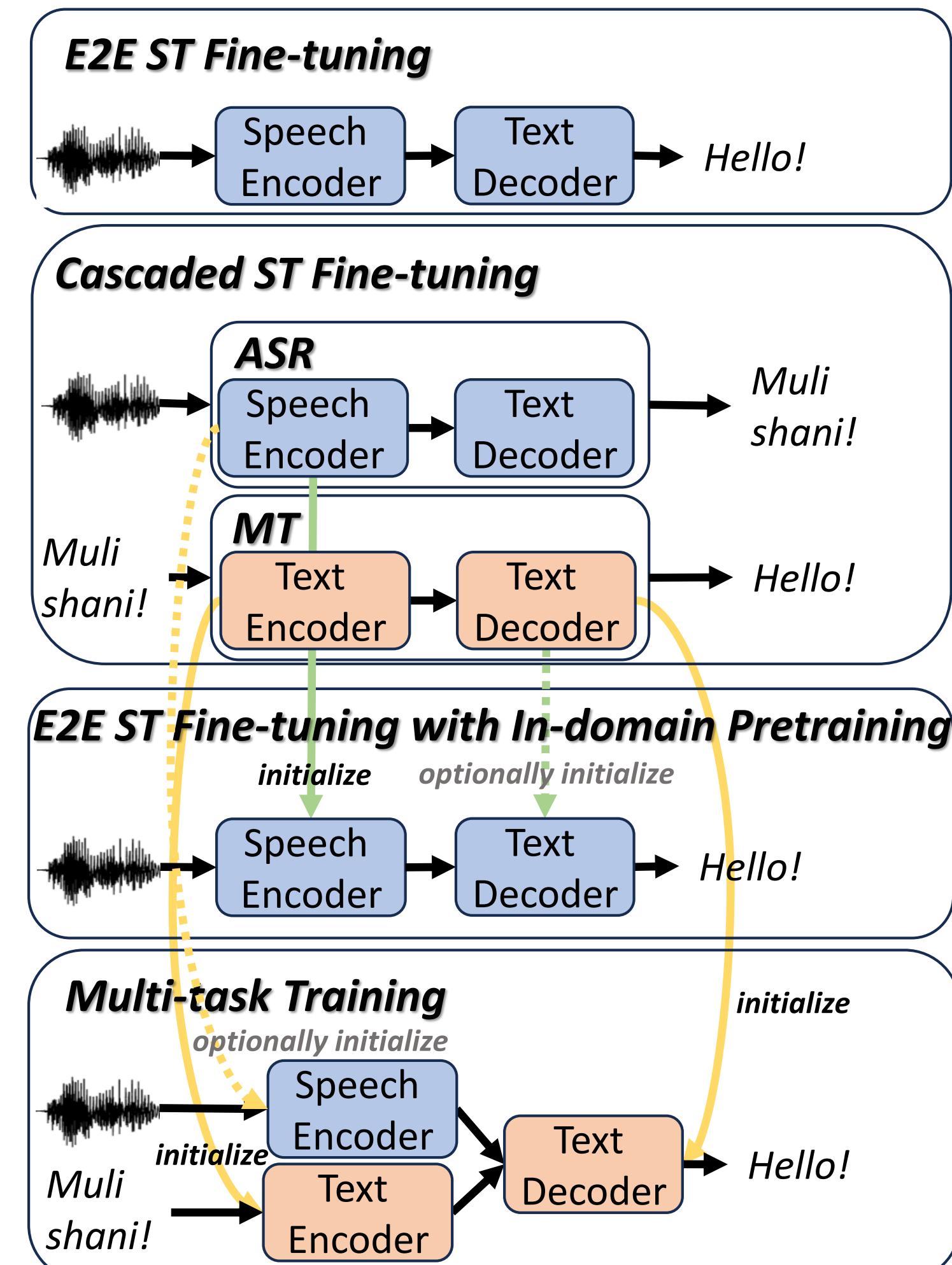


Figure 1: Four fine-tuning strategies. Encoders and decoders refer to the base model components.

- **Base Model:** SeamlessM4T-v2-Large.
- **Terminology:**
 - $x^{\text{sp}}, x^{\text{text}}, y$: source speech, source text, target text
 - $\theta_{\text{se}}, \theta_{\text{te}}, \theta_{\text{td}}$: speech encoder, text encoder, text decoder
 - $\theta_{\text{se}}^{\text{ASR}}$ and $\theta_{\text{td}}^{\text{ASR}}$: speech encoder and text decoder fine-tuned by the ASR objective
 - $\theta_{\text{te}}^{\text{MT}}$ and $\theta_{\text{td}}^{\text{MT}}$: text encoder and decoder fine-tuned by the MT objective
- **Training Objectives**
 - **E2E ST Fine-tuning:** $L_{\text{E2E}} = -\frac{1}{|y|} \log p(y|x^{\text{sp}}; \theta_{\text{se}}, \theta_{\text{td}})$
 - **Cascaded ST Fine-tuning/In-domain pre-training:**
 - * ASR objective: $L_{\text{ASR}} = -\frac{1}{|x^{\text{text}}|} \log p(x^{\text{text}}|x^{\text{sp}}; \theta_{\text{se}}, \theta_{\text{td}})$
 - * MT objective: $L_{\text{MT}} = -\frac{1}{|y|} \log p(y|x^{\text{text}}; \theta_{\text{te}}, \theta_{\text{td}})$
 - * The obtained $\theta_{\text{se}}^{\text{ASR}}$ and $\theta_{\text{td}}^{\text{ASR}}$ can be used to init E2E ST fine-tuning
 - **Multi-task Fine-tuning:**
 - * The output from the MT teacher: $p_{\text{teacher}}(\cdot|y_{<i}, x^{\text{text}}) = \text{stop-gradient}(p(\cdot|y_{<i}, x^{\text{text}}; \theta_{\text{te}}, \theta_{\text{td}}))$
 - * The knowledge distillation objective: $L_{\text{KD}} = \frac{1}{|y|} \sum_{i=1}^{|y|} D_{\text{KL}}[p_{\text{teacher}}(\cdot|y_{<i}, x^{\text{text}}) || p(\cdot|y_{<i}, x^{\text{sp}}; \theta_{\text{se}}, \theta_{\text{td}})]$
 - * The overall loss: $L = \alpha \cdot L_{\text{E2E}} + \beta \cdot L_{\text{MT}} + \gamma \cdot L_{\text{KD}}$

MAIN RESULTS

Lang	System	Dev	Lang	System	Dev
aeb	E2E	22.73	est	E2E	36.89
	E2E-ASR _{init}	25.48		E2E-ASR _{init}	36.97
	E2E-ASR _{init} -MT _{init}	24.08		Cascaded	38.00
	MLT	24.23	mlt	E2E	57.65
bem	MLT-ASR _{init}	24.64		E2E-ASR _{init}	57.57
	Cascaded	24.42		MLT	57.46
	E2E	31.14		Cascaded	57.04
fon	E2E-ASR _{init}	31.96	mar	E2E	44.84
	Cascaded	28.02		E2E-ASR _{init}	44.72
	E2E	40.86		E2E	12.32
gle	E2E	24.07	que	E2E-ASR _{init}	13.00
	E2E-ASR _{init}	23.34		E2E-ASR _{init} -MT _{init}	13.37
bho	E2E	33.92		MLT-ASR _{init}	13.03
	E2E-ASR _{init}	39.04		Cascaded	13.15

Table 1: BLEU scores on dev sets.

Table 2: BLEU scores on dev sets.

CODEBASE MATTERS

The official and the HuggingFace models have different default behaviors. More details can be found in Appendix A.

Lang	OFF E2E Dev	HF E2E Dev
aeb	23.76	22.73
bem	30.69	31.14
gle	29.63	24.07
bho	41.96	33.92
est	38.07	36.89
mlt	57.92	57.65
mar	42.52	44.84

Table 3: Comparison between the official (OFF) and HuggingFace (HF) codebases.

ADDITIONAL DATA SUBSTANTIALLY IMPROVES QUE

Adding additional ASR/MT/ST data is especially important for que, which has only 1.67 hours of official E2E ST data.

Datasets	Dev ASR CER
IWSLT2025	19.19
+Huqariq	16.97
+Siminchik	15.54
Datasets	Dev MT BLEU
IWSLT2025	5.88
+Huqariq+JW300+Hinantin	14.38
+ NLLB	15.29

Datasets	System	Dev ST BLEU
	E2E	3.73
IWSLT2025	E2E-ASR _{init}	9.84
	E2E-ASR _{init} -MT _{init}	10.42
	E2E	12.32
+Huqariq	E2E-ASR _{init}	13.00
	E2E-ASR _{init} -MT _{init}	13.37

CONCLUSION

- E2E fine-tuning (with in-domain ASR pre-training) performs best.
- Adding more data is generally beneficial.